Search results for " excitons"

showing 10 items of 17 documents

Recombination processes in unintentionally doped GaTe single crystals

2002

Emission spectra of GaTe single crystals in the range of 1.90–1.38 eV have been analyzed at different temperatures and excitation intensities by photoluminescence, photoluminescence excitation, and selective photoluminescence. A decrease in band gap energy with an increase in temperature was obtained from the redshift of the free exciton recombination peak. The energy of longitudinal optical phonons was found to be 14±1 meV. A value of 1.796±0.001 eV for the band gap at 10 K was determined, and the bound exciton energy was found to be 18±0.3 meV. The activation energy of the thermal quenching of the main recombination peaks and of the ones relating to the ionization energy of impurities and…

PhotoluminescenceImpurity statesBand gapChemistryExcitonGallium compounds ; III-VI semiconductors ; Photoluminescence ; Impurity states ; Cefect states ; Electron-phonon interactions ; Phonon-exciton interactions ; Excitons ; Red shift ; Radiation quenchingDopingGallium compoundsRadiation quenchingUNESCO::FÍSICAIII-VI semiconductorsGeneral Physics and AstronomyPhonon-exciton interactionsCefect statesAcceptorRed shiftElectron-phonon interactionsCondensed Matter::Materials Science:FÍSICA [UNESCO]ExcitonsPhotoluminescence excitationEmission spectrumIonization energyAtomic physicsPhotoluminescence
researchProduct

Time resolved emission at 1.3 μm of a single InAs quantum dot by using a tunable fibre Bragg grating

2013

Photoluminescence and time resolved photoluminescence from single metamorphic InAs/GaAs quantum dots (QDs) emitting at 1.3 mu m have been measured by means of a novel fibre-based characterization set-up. We demonstrate that the use of a wavelength tunable fibre Bragg grating filter increases the light collection efficiency by more than one order of magnitude as compared to a conventional grating monochromator. We identified single charged exciton and neutral biexciton transitions in the framework of a random population model. The QD recombination dynamics under pulsed excitation can be understood under the weak quantum confinement potential limit and the interaction between carriers at the …

single quantum dot time resolved spectroscopy fibre Bragg grating excitonsPhotoluminescenceMaterials scienceexcitonsExcitonfibre Bragg gratingPhysics::OpticsBioengineeringGratinglaw.inventionCondensed Matter::Materials ScienceFiber Bragg gratinglawGeneral Materials ScienceElectrical and Electronic EngineeringBiexcitonMonochromatorWetting layerCondensed Matter::Quantum Gasesbusiness.industryCondensed Matter::OtherMechanical EngineeringGeneral ChemistryCondensed Matter::Mesoscopic Systems and Quantum Hall Effectsingle quantum dottime resolved spectroscopyMechanics of MaterialsQuantum dotOptoelectronicsbusiness
researchProduct

Growth and optical characterization of indirect-gap AlxGa1−xAs alloys

1999

Nonintentionally doped AlxGa1−xAs layers with 0.38 x 0.84 were grown on (100) GaAs substrates by liquid phase epitaxy (LPE) under near-equilibrium conditions. The crystalline quality of the samples was studied by photoluminescence at 2 K and room temperature Raman spectroscopy. The peculiar behavior in the photoluminescence intensities of the indirect bound exciton line and the donor–acceptor pair transition is explained from the evolution of the silicon donor binding energy according to the aluminum composition. It was also possible to observe the excitonic transition corresponding to the AlxGa1−xAs/GaAs interface, despite the disorder and other factors which are normally involved when gro…

PhotoluminescenceMaterials scienceIII-V semiconductorsSiliconExcitonBinding energyGeneral Physics and Astronomychemistry.chemical_elementBinding energyEpitaxyMolecular physicssymbols.namesakePhonon spectraLiquid phase epitaxial growth:FÍSICA [UNESCO]PhotoluminescenceAluminium compoundsX-ray absorption spectroscopyGallium arsenide Semiconductor growthImpurity statesDopingUNESCO::FÍSICASemiconductor epitaxial layersCrystallographychemistrysymbolsPhotoluminescence ; Binding energy ; Raman spectra ; III-V semiconductors ; Aluminium compounds ; Gallium arsenide Semiconductor growth ; Liquid phase epitaxial growth ; Semiconductor epitaxial layers ; Impurity states ; Excitons ; Phonon spectraExcitonsRaman spectraRaman spectroscopy
researchProduct

Modulation of the electronic properties of GaN films by surface acoustic waves

2003

We report on the interaction between photogenerated electron-hole pairs and surface acoustic waves (SAW) in GaN films grown on sapphire substrates. The spatial separation of photogenerated carriers by the piezoelectric field of the SAW is evidenced by the quenching of the photoluminescence (PL) intensity. The quenching levels in GaN are significantly smaller than those measured in GaAs under similar conditions. The latter is attributed to the lower exciton ionization efficiency and carrier separation probabilities mediated by the piezoelectric effect. The PL spectra also evidence energy shifts and broadenings of the electronic transitions, which are attributed to the band gap modulation by …

PhotoluminescenceMaterials scienceIII-V semiconductorsSurface acoustic wavesBand gapExcitonRadiation quenchingGeneral Physics and AstronomySemiconductor thin filmsCondensed Matter::Materials Science:FÍSICA [UNESCO]IonizationPiezoelectric semiconductorsPhotoluminescenceQuenchingbusiness.industryUNESCO::FÍSICAWide-bandgap semiconductorGallium compoundsAcoustic waveCondensed Matter::Mesoscopic Systems and Quantum Hall EffectWide band gap semiconductorsGallium compounds ; III-V semiconductors ; Wide band gap semiconductors ; Surface acoustic waves ; Semiconductor thin films ; Photoluminescence ; Radiation quenching ; Piezoelectric semiconductors ; Excitons ; Energy gapEnergy gapSapphireOptoelectronicsExcitonsbusiness
researchProduct

Competition between carrier recombination and tunneling in quantum dots and rings under the action of electric fields

2008

6 páginas, 3 figuras.-- Proceedings of the 7th International Conference on Physics of Light-Matter Coupling in Nanostructures.

PhysicsCondensed matter physicsExcitonQuantum-confined Stark effectSingle quantum dotElectronCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsQuantum dotElectric fieldElectro-absorption modulatorCharged excitonsGeneral Materials ScienceElectrical and Electronic EngineeringWave functionQuantum tunnellingSuperlattices and Microstructures
researchProduct

Correlation between optical properties and barrier composition in InxGa1−xP/GaAs quantum wells

1998

9 páginas, 11 figuras.

III-V semiconductorsPhotoluminescenceMaterials scienceBand gapExcitonAlloyGeneral Physics and Astronomyengineering.materialGallium arsenideSpectral line broadeningchemistry.chemical_compoundCondensed Matter::Materials ScienceGallium arsenideIndium compounds:FÍSICA [UNESCO]Optical constantsInterface structureFluctuationsSemiconductor quantum wellsPhotoluminescenceQuantum wellCondensed matter physicsCondensed Matter::OtherGallium compoundsUNESCO::FÍSICAHeterojunctionInterface statesCondensed Matter::Mesoscopic Systems and Quantum Hall EffectStoichiometryEnergy gapchemistryIndium compounds ; Gallium compounds ; III-V semiconductors ; Gallium arsenide ; Semiconductor quantum wells ; Interface structure ; Photoluminescence ; Excitons ; Interface states ; Fluctuations ; Stoichiometry ; Spectral line broadening ; Energy gap ; Optical constantsengineeringExcitonsMolecular beam epitaxy
researchProduct

Unravelling the Intertwined Atomic and Bulk Nature of Localised Excitons by Attosecond Spectroscopy

2021

The electro-optical properties of most semiconductors and insulators of technological interest are dominated by the presence of electron-hole quasi-particles, called excitons. The manipulation of excitons in dielectrics has recently received great attention, with possible applications in different fields including optoelectronics and photonics. Here, we apply attosecond transient reflection spectroscopy in a sequential two-foci geometry and observe sub-femtosecond dynamics of a core-level exciton in bulk MgF2 single crystals. Furthermore, we access absolute phase delays, which allow for an unambiguous comparison with theoretical calculations. Our results show that excitons surprisingly exhi…

optoelectronicsAttosecondphotonicsAttosecond dynamicsGeneral Physics and AstronomyPhysics::Optics02 engineering and technologysemiconductorsTransient reflectivity01 natural sciencesSettore FIS/03 - Fisica Della MateriaUltrafast photonicsPhysicsMultidisciplinaryCondensed matter physicsQCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnologyfemtosecond optical Stark effectdielectricsStark effectFemtosecondsymbols0210 nano-technologyPhysics - OpticsElectronic properties and materialsattosecondexcitonsScienceExcitonFOS: Physical sciencesArticleGeneral Biochemistry Genetics and Molecular BiologyCondensed Matter::Materials Sciencesymbols.namesakeMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesPhysics::Atomic and Molecular Clusters010306 general physicsSpectroscopyCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryGeneral ChemistryCore excitonselectro-optical propertiesSemiconductorPhotonicsbusinessUltrashort pulseelectron-hole quasi-particlesOptics (physics.optics)
researchProduct

Thermal activated carrier transfer between InAs quantum dots in very low density samples

2010

In this work we develop a detailed experimental study of the exciton recombination dynamics as a function of temperature on QD-ensembles and single QDs in two low density samples having 16.5 and 25 dots/¼m2. We corroborate at the single QD level the limitation of the exciton recombination time in the smallest QDs of the distribution by thermionic emission (electron emission in transient conditions). A portion of these emitted carriers is retrapped again in other (larger) QDs, but not very distant from those emitting the carriers, because the process is limited by the diffusion length at the considered temperature.

HistoryWork (thermodynamics)Condensed Matter::Otherbusiness.industryChemistryExcitonThermionic emissionElectron66.30.H- Self-diffusion and ionic conduction in nonmetals78.67.Hc Quantum dotsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectMolecular physicsComputer Science ApplicationsEducationCondensed Matter::Materials Science78.55.Cr III-V semiconductorsQuantum dotThermalOptoelectronics71.35.-y Excitons and related phenomenaDiffusion (business)businessRecombination79.40.+z Thermionic emissionJournal of Physics: Conference Series
researchProduct

Optical and photovoltaic properties of indium selenide thin films prepared by van der Waals epitaxy

2001

Indium selenide thin films have been grown on p-type gallium selenide single crystal substrates by van der Waals epitaxy. The use of two crucibles in the growth process has resulted in indium selenide films with physical properties closer to these of bulk indium selenide than those prepared by other techniques. The optical properties of the films have been studied by electroabsorption measurements. The band gap and its temperature dependence are very close to those of indium selenide single crystals. The width of the fundamental transition, even if larger than that of the pure single crystal material, decreases monotonously with temperature. Exciton peaks are not observed even at low temper…

Materials scienceBand gapExcitonIndium compounds ; III-VI semiconductors ; Semiconductor epitaxial layers ; Electroabsorption ; Excitons ; Minority carriers ; Carrier lifetimeCarrier lifetimeGeneral Physics and Astronomychemistry.chemical_elementIII-VI semiconductorschemistry.chemical_compoundIndium compounds:FÍSICA [UNESCO]SelenideThin filmMinority carriersbusiness.industrySemiconductor epitaxial layersUNESCO::FÍSICACarrier lifetimeCopper indium gallium selenide solar cellschemistryElectroabsorptionOptoelectronicsExcitonsbusinessSingle crystalIndium
researchProduct

Luminescence mechanisms of defective ZnO nanoparticles.

2016

ZnO nanoparticles (NPs) synthesized by pulsed laser ablation (PLAL) of a zinc plate in deionized water were investigated by time-resolved photoluminescence (PL) and complementary techniques (TEM, AFM, μRaman). HRTEM images show that PLAL produces crystalline ZnO NPs in wurtzite structure with a slightly distorted lattice parameter a. Consistently, optical spectra show the typical absorption edge of wurtzite ZnO (Eg = 3.38 eV) and the related excitonic PL peaked at 3.32 eV with a subnanosecond lifetime. ZnO NPs display a further PL peaking at 2.2 eV related to defects, which shows a power law decay kinetics. Thermal annealing in O2 and in a He atmosphere produces a reduction of the A1(LO) Ra…

Materials sciencePhotoluminescenceGeneral Physics and AstronomyNanotechnology02 engineering and technologyElectrontime resolved photoluminescence010402 general chemistry01 natural sciencessymbols.namesakeLattice constantPhysical and Theoretical ChemistryHigh-resolution transmission electron microscopyRamanFIS/03 - FISICA DELLA MATERIAWurtzite crystal structurebusiness.industrySettore FIS/01 - Fisica Sperimentale021001 nanoscience & nanotechnology0104 chemical sciencesAbsorption edgeZnO nanoparticles laser ablation Luminescence microscopy excitons defectssymbolsTEMZnOOptoelectronicsoxide nanoparticle0210 nano-technologybusinessRaman spectroscopyLuminescencePhysical chemistry chemical physics : PCCP
researchProduct